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A Method for the Analysis of Biaxial
Graded-Index Optical Fibers
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Abstract —The problem of wave propagation in a biaxial
graded-index fiber with circular symmetry is considered. The
problem is formulated in terms of four first-order differential
equations for the tangential components of the electric and
magnetic fields. A general solution method for solving systems
of differential equations is presented. This solution method is
then used to solve the system of equations for a particular
example of a biaxial graded-index fiber. Numerical results for
the propagation constant in the fiber are also given.

1. INTRODUCTION

HE optical fiber has become a much-studied trans-

mission system owing to its property of wave guid-
ance with low loss. In recent years it has been shown that
introducing anisotropies into the dielectric medium of the
fiber produces several interesting features, such as control
of power flow [1], loss characteristics [2], and reduction of
peak attenuation near cutoff [3].

Typically the analysis of wave propagation in a cylindri-
cal dielectric waveguide such as an optical fiber is per-
formed using a wave equation formulation. For the simple
case of a step-index fiber a detailed analysis, including
dispersion relations, cutoff conditions, and mode designa-
tions, is presented by Snitzer [4]. Paul and Shevgaonkar
[3] present a similar analysis for a uniaxial step-index fiber
and also perform a perturbation analysis to determine the
modal attenuation constants. These are the only two cases
for which exact solutions are known.

For inhomogeneous fibers no exact solutions are known.
For the case of an isotropic graded-index fiber several
approximate analytic solution methods are available.
These approximate solutions all share the common as-
sumption that the fiber is infinite in extent. In addition if
the permittivity is assumed to vary slowly over the dis-
tance of one wavelength the wave equation formulation
simplifies to an associated scalar wave equation. If the
permittivity profile is parabolic, the solution to the scalar
wave equation can be written in terms of either Laguerre
polynomials if cylindrical coordinates are used or Hermite
polynomials if rectangular coordinates are used [5]. For
arbitrary permittivity profiles the scalar wave equation
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can be solved using the well-known Wentzel-Kramers—
Brillouin (WKB) solution method [6], [7]. For a parabolic
permittivity profile all three solution methods give identi-
cal results. Under the assumption that the fields are far
from cutoff, Kurtz and Streifer [8], [9] have shown that a
solution to the full vector problem can be written either
in terms of Laguerre polynomials if the permittivity pro-
file is quadratic or asymptotically in terms of Bessel and
Airy functions for arbitrary permittivity profiles which
decrease slowly and monotonically. A comparison of the
vector and scalar solutions for the quadratic permittivity
profile implies that the vector modes can be obtained by
simply renumbering the scalar modes [10]. Using the
renumbered scalar modes as a basis, Hashimoto [11] and
Ikuno [12] have developed two slightly different asyrop-
totic methods which can be used to solve the full vector
problem for an isotropic graded-index fiber.

These approximate solutions all share the common
feature that the propagation constants are determined
during the process of finding a solution to the wave
equation. This differs from the case of a step-index fiber,
where the propagation constants are determined by using
the solutions to the wave equation to impose the electro-
magnetic boundary conditions at the interface between
the core and the cladding of the optical fiber. Comparing
the propagation constants obtained using one of the ap-
proximate solution methods with those obtained using a
numerical solution method [13], one finds that these ap-
proximate solutions methods produce modes which do
not appear in the numerical solution. This suggests that
the electromagnetic boundary conditions at the core—
cladding interface are important and that an alternative
formulation which permits the imposition of the boundary
conditions is needed.

An alternative formulation of the problem is to write
the four first-order differential equations for the tangen-
tial field components as a first-order matrix differential
equation. For a step-index fiber with uniaxial core and
cladding, Tonning [14] has shown that the matrix formula-
tion can be solved exactly in terms of Bessel functions.
For isotropic graded-index fibers with arbitrary permittiv-
ity profiles, Yeh and Lingren [13] have indirectly used the
matrix formulation in developing a numerical solution
method based on the concept of stratification. Using the
concept of transition matrices, Tonning [15] has devel-
oped a numerical procedure which can be used to solve
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Fig. 1.

Geometry of the fiber.

the matrix differential equation for isotropic graded-index
fibers.

II. FORMULATION OF THE PROBLEM

Consider a circularly symmetric optical fiber with the
geometry shown in Fig. 1. In the core, 0 < p <a, the
permittivity is given by €,€,(p), where ¢ is the permittiv-
ity of free space and €,(p) is the relative permittivity
tensor of the core and is a function of p only. In the
cladding, a < p < b, the permittivity is given by €4¢,, where
€, is the relative permittivity of the cladding and is
assumed to be constant. In both the core and the cladding
the permeability is u,, the permeability of free space. For
convenience, the external radius of the cladding, b, is
assumed to be sufficiently large in comparison with the
radius of the core, a, so that it is not necessary to impose
boundary conditions at the air—cladding boundary.

Consider the case where the relative permittivity tensor
in the core is given by

€(p) 0 0
&(p)=| 0 elp) O (1)
0 0 63([)) p.d,z

where €,(p), €,(p), and €,(p) are the relative permittivi-
ties in the p, ¢, and z directions respectively. In general
the relative permittivities are arbitrary functions of p.
However, the choice of cylindrical coordinates requires
that €,(p) and e,(p) be equal at p=0.

For .time harmonic fields in a source-free region,

Maxwell’s equations can be written as
VX H = jweye, E (2a)
VXE=—jouH (2b)

where w is the angular frequency. If the z and ¢ depen-
dence of the fields is given by

e Bz tyme

where B is the longitudinal wavenumber and m is any
integer, then for cylindrical coordinates Maxwell’s equa-

tions can be written in component form as

m
;HZ + BH, = wege E, (3a)
. dHZ .

— ]BHP — g‘b— = ]w€0€2E¢ (3b)
1d jm )
;;l;(pH¢)——;—Hp=]weoe3Ez (3¢)

m
?E: +BEy=—opH, (3d)
. dEZ
JBE, + s = jouoH, (3e)
1 d j
;E(pE(b)——-—E‘,— — jou H, (3f)

The remainder of the problem can now be formulated in
two different ways. If the transverse field components E ,
Ey, H, and H, are eliminated from equations (3), we
obtain a pair of coupled second-order differential equa-
tions for the longitudinal field components E. and H_.
Alternatively, if the radial components E, and H, are
eliminated, we obtain a system of four first-order differ-
ential equations for the tangential field components E,,
Ey, H,, and H,.

First consider the coupled wave equation formulation.
It is convenient to define a normalized magnetic field
h=Z,H, where Z,=+/1, /€, is the impedance of free
space. Solving (3a), (3b), (3d), and (3e) for E,, E, h,,
and A, gives

Ep=i_m—k°h-—j/sdEZ] (4a)

kil o dp

h¢—i2 " jkoelflfil (4b)
kal o~ dp

E,-—|"EE +,~k0dhf} (4)
ksl p 7 dp

L L[mke

where k,= wy/e u, is the free-space wavenumber and
k2 =k2e (p)—B% n=1,2, is the transverse wavenum-
ber. Substituting the expressions for E,, E,, h,, and h,
given by equations (4) into (3¢) and (3f) and making a
change of variable from p to a normalized radius r = p /a
results in the following pair of coupled differential equa-
tions for £, and & _:

E!+ fi(r)E,+ Ng(r)E, = py(r)h, + gy(r)h. (52)

hy+ fr(r)h) +A2g2(r)hz =pi(r)E;+aq(r)E,, (5b)
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where '=d /dr, A*> =(k,a)*, k=B /k,, and

by
o) =2 - =0 (60)

(60
S R R
- 22| A0 e (&)
patr) = = | 202D | (o
o - - 25| K0 (6®)
Y

The equations for E. and 4, become uncoupled for three
particular cases. For the so-called meridional modes m is
equal to zero and therefore, from (6¢)—(6h), so are the
functions p,(r), p,(r), g,(r), and g,(r). For isotropic and
uniaxial step-index fibers, €, and €, are equal and con-
stant and again from (6¢)-(6h) the functions p(r), p,(r),
q,(r), and gq,(r) are zero.

In general a solution of equations (5) for arbitrary
permittivity profiles is not possible. It is possible to obtain
a fourth-order differential equation for either E, or A, by
eliminating A, or E, from equations (5). However, the
complexity of the resulting equation precludes the deter-
mination of a solution. For meridional modes a direct
series solution of the uncoupled equations is possible.
However, because of the poles in the functions fy(r) and
f,(r) the resulting series solution will not be convergent
for the entire core region. An exact solution of equations
(5) is possible only for the case of a step-index fiber. For
cither an isotropic or a uniaxial step-index fiber the
coupled equations simplify to Bessel’s differential equa-
tion. .

In order to find an analytic solution of equations (5)
some assumptions must be made. First, the, cladding is
neglected and the core is assumed to extend to infinity.
This eliminates the need to impose boundary conditions
on the solution at the core—cladding boundary. Second,
the permittivities are assumed to be slowly varying func-

tions of r over a distance of several wavelengths. This is
equivalent to assuming €/(r) = 0. For the case of either an
isotropic or a uniaxial graded-index fiber, €,(r) = €,(r),
application of the second assumption to equations (5)
results in the following equations for E, and 4,:

1
Ef +~EL+ Ng,(r)E, =0 (7a)
r
1
h’z’+—r—h;+A2g2(r)hz=O (7b)
where g,(r) and g,(r) are given by
€;5(r) m?
gl(r)=;1(—r)—[€1(r)—K2]—A2r2 (8a)
2
8r) =e(r)—«>— (8b)

A2r2 :

For the case of a biaxial graded-index fiber, €(r) # €,(r),
the previous assumption does not cause equations (3) to
uncouple since p,(r) and p,(r) are not identically equal
to zero.

Equations (7) can be solved easily using the well-known
WKB solution method [6], [7], [16]. The solutions ob-
tained using this method are not solutions of the full
vector problem given by equations (5) but rather are
solutions to a related scalar problem given by equations
(7). However, the vector solutions can be obtained by
renumbering the solutions to the scalar problem {10].

For the case of a biaxial graded-index fiber the WKB
solution method can be applied blindly to equations (5) to
determine the first term in the WKB expansion (higher
order terms are coupled). However, for biaxial graded-
index fibers, the term representing the phase of the WKB
solution contains a pole in addition to the one at r =0
which, for most permittivity profiles, lies in the core
region. Therefore, it is not reasonable to assume that the
WKB phase condition remains valid in this situation. In
order to solve Maxwell’s equations for the case of a
biaxial graded-index fiber an alternative formulation
should be used.

Instead of eliminating the transverse field components
from equations (3), eliminate the radial field components
E, and H, and write the remaining four equations as a
system of four first-order differential equations in terms
of the tangential components [15]. From the two algebraic
equations, (3a) and (3d), the radial components can be
written in terms of the tangential components as

m
E, = wege, [;HZ + BH¢] (9a)
1 [m
Hp=——[—Ez+BE¢]. (9b)
Wi | P
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Using equations (9), the four remaining equations can be
written as

dE. me j 5

s i T+ (e, P)(sh 10

ds Js:slhz—*—sel('sl K )(s 4’) (10a)
d J 2 2 ‘——mK h 10b
3 (Ea) = 5 (m* = es)ho i (shy) - (100)

dh, mxk i

ds =]TEZ“‘;(€2—K2)(SE¢) (100)
d

j ) 5 mk g
Z;(Shd)) = - ;(m — €38 )EZ - ]T(SE¢) (10 )
where a change of variable from p to a normalized radius
s = kyp has been made. Equations (10) can be written in
matrix form as
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for the cases of an isotropic and a uniaxial step-index
fiber [14], [15]. These solutions are identical to the exact
solutions of the wave equation formulation.

It is not readily apparent that the matrix equation is
easier to solve than the wave equation formulation. As
was mentioned earlier, a series solution for the wave
equation formulation is possible only when the equations
are uncoupled. However, for the meridonal modes of a
graded-index fiber no series solution will be convergent
for the entire core region. In contrast, the system matrix
A(s) does not have any poles in the core region and
therefore the series solutions will be convergent in the
entire core region.

While the form of A(s) guarantees a convergent series
solution the series may not converge rapidly enough to
use it in numerical computations. An alternative solution

d_" _ l A(s)u (11a) method is asymptotic partitioning of systems of equations
ds s [17]. This method involves the transformation of a system
where of linear first-order differential equations into a system of
u= ( E, sE, h shd,)T (11b) equations whose solutions are easier to find. The form of
and
mk J
0 0 —Jj— —(e—«7
/ € € ( ! )

A(s) = 0 0 i(mz—e s?) = (11c)

(s)= €1 ! €1

Jjmk —j(es — &%) 0 0

— j(m?* — e35?%) — jmxk 0

For the special case of meridional modes, m = 0, equa-
tions (10) can be separated into two systems, each con-
taining two equations. The first set, corresponding to
transverse magnetic modes (TM), can be written in matrix
form as

du(TM)

s = ;A(TM)(s)u(TM) (12a)
where

™ (E sh,)' 12b

z [
and
J
0 — (&, —«?)
A(TM)(s) = € (12c)

Jjess? 0

The second set, corresponding to transverse electric modes
(TE), can be written as

TE
d";s . AT (5)uT® (13a)
where
u™=(h, sE,) (13b)
and
: 2
ATE(5) = - _1(62_'( ) (13¢)
—Js 0

The only known exact solutions of the matrix equation are

the solution method presented in the next section is based
on the expansion of the general system matrix A(x) in
terms of positive powers of x, in contrast to the usual
form, where the expansion is in terms of powers of 1/x
(see e.g. [17]

II1. MATRIX PARTITIONING

Consider the following system of N linear differential
equations:
du

1
£=FA(X)"(X)

where u is a column vector, g is an integer greater than
or equal to 1, and A(x) is an N X N matrix given by

as x >0 (14)

(15)

It is possible to simplify this system of equations by
transforming them into some special differential equa-
tions whose solutions are casier to find. Let

u(x)=P(x)v(x) (16)
where v is a column vector and P(x) is an N XN
nonsingular matrix. Using (16), the original problem given
by (14) can be transformed into

dv 1
‘d;=;53(x)”(x)

A(x)= ) A,x" asx—0.
n=20

(17)
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where
-1 dP(x)
B(x)=P(x) |A(x)P(x)— x4 e (18)
or, more conveniently,
dP(x)
x1 T =A(x)P(x)— P(x)B(x). (19)

The matrix P(x) is chosen so that B(x) has a convenient
form, either the diagonal or the Jordan canonical form. If
B(x) has either of these forms, the solution of the trans-
formed system for v is trivially obtained. For example, if
A(x) is a constant matrix, then P(x) is also a constant
matrix and (18) is simply a similarity transformation. This
implies P(x) is chosen so that B(x) is either the diagonal
or the Jordan canonical form of A(x). In general, when
A(x) is not a constant matrix, P(x) is not a constant
matrix and it is not clear from either (18) or (19) how
P(x) should be chosen so that B(x) has the desired form.
In order to develop a procedure to find B(x) and P(x),
start by expanding them as the following Taylor series:

B(x)= Y B,x" asx—0
n=0

P(x)= Y Px" asx—0 (20)
n=0

where in general B, is a Jordan canonical matrix and B,

is a diagonal matrix. Substituting equations (20) into (19)

and equating like powers of x gives

for x° and
n
(n—q+1)Pan+1= Y (4,P,_,—PB,_;) (22)
/=0

for x", n>1, where P,_,, ;=0 for n—q+1<0. Equa-
tions (21) and (22) define an iterative procedure to find
the coefficient matrices for the series expansions of B(x)
and P(x) so that either (18) or (19) is satisfied. Equation
(21) can be rewritten as

B, =Py '4,P, (23)
which implies P, is chosen so that B, is either the
diagonal or the Jordan canonical form of 4,. With some

algebraic manipulations, (22) can be written more conve-
niently as
BOW/;I - l/ang() = (l’l —q-+ 1)W/;z—q+1 + Bn - Fn (24)
where the matrices W, and F, are defined as
W,=P;'P, (29)
and
n—1
Fn=PO—1I4nPO+P(;1 Z (An—lPl_Pan—l)‘ (26)
I=1
Notice that the unknowns in (24) are the matrices B, and
W, and that the matrices W, __,; and F, depend solely on

matrices found in previous iterations. Since by definition
B is a diagonal matrix, (24) can be solved easily for B,

n

and W, by setting the diagonal elements of B, and F,
equal to each other and then solving for W, from what
remains of (24). Since the form of B, is known in ad-
vance, an explicit solution in terms of B, and F, can be
found for W,.

Consider the special case where B, is a diagonal matrix
and g =1. This corresponds to the form of the matrix
differential equation (11) which we want to solve. While it
is not obvious from (11c¢) that, for this particular problem,
B, will be a diagonal matrix, it will be shown later that it
is possible to choose P, such that this is true.

When B, is a diagonal matrix the expression ByW, —
W,B, has zeros along its main diagonal and does not
depend upon the elements along the main diagonal of W,.
The solution to (24) can be easily written as

(Fn)ll’ i=j
B). =
(B,) 0 i (27)
and
0, i=j
(mz)u: _ F).. £ § (28)
A,_A—n( n)lj’ l «]

i J

where A,, i=1,2,---, N, are the eigenvalues of 4,. One
potential problem exists with this solution. If A;—A; —n
=0 and (F,,),.j # () for some particular values of i, j, and
n, then it may not be possible to find W, and a solution
may therefore not be possible.

Consider a biaxial graded-index fiber with permittivity
profiles of the power law type given by

e(r)=e(1-2A,r"), =123 (29)

where €;=€,(0) and A, =(¢;,—€.)/2¢,. Since the choice
of the coordinate system requires €,(0) = €,(0), the defini-
tion of A; requires that A; and A, be equal. Then, for
this choice of permittivity profiles, e,(r) and €,(r) are not
equal only when «, # a,. The case of a step-index fiber
exists as a special case to the power law profiles in the
limit as a«; — %, or, equivalently, by setting A, =0.

Now let us solve the matrix equation for the transverse
modes in a biaxial fiber where the permittivity profiles are
parabolic. The relative permittivity profiles can be written
in terms of the normalized radius s = kop = (kqa)r as

€(s)=¢(1-24%%), i=1,2,3 (30)

where A% = A, /(k,a)*. Strictly speaking, this choice for
€,(s) does not produce a biaxial fiber since by definition
€, =¢, and A= AY. Since €,(s) and €,(s) do not appear
together in the matrix equations for the transverse modes,
(12) and (13), it is not necessary to set e, equal to €.
However, in the final result it is necessary to replace €, by
€, and either set A9=0 and obtain the solution for a
biaxial fiber where €,(s) is constant and €,(s) is parabolic
or set A% =0 and obtain the solution for the case where
€,(s) is parabolic and e,(s) is constant. The first term in
the series expansions for A™(s) and A™®)(s) is given by

A= (8 5) (31a)
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where

—J—(El—KZ), i=T™™
T={ €

(31b)
—j(ez—Kz), i=TE

Since the two eigenvalues of 4 are both equal to zero it
is not possible to find a nonzero P, such that B, is a
diagonal matrix. Instead, P, must be chosen so that B is
a Jordan canonical matrix. For 4, as given by (31), choose

P, as
{0
15"‘(0 1)

g ) o

is a Jordan canonical matrix. After four iterations, the
solution for the TM case is found to be

so that

E

z

) €, k2
= —k}Vlcl{l— 2 M2
€4 € 4

+

214 2
_Ei .]cﬂ+_e-_3A%.]€ﬂ st e(€3/€1)AqK234/4 (343)
64 € 8

€; ki

i 274 2
_|[&) + 30 ki st} elea/entl’s? /4
16 € ° 2

(34b)

where k%, =¢,—k? and C, is a constant. The solution
for the TE case is

72 ki 2 kv 2| ,epn%s* /4
h,=—jkx.C, 1—Ts +a—s €22 (35a)

ks , ki
sE, = —C,| —s?— —s*
¢ 1[ 2 16
where k%, =€, — k*.
Now consider the solution of the matrix equation for
hybrid modes. For all permittivity profiles the first term in
the series expansion of A(s) is

eszA%s4/4

(35b)

mk k2

0 0 —— j_ﬁl

€ €1

2
jm mk
Ay= 0 0 — j —— (36)

€1 €
jme = jk3, 0 0
—jm? - jmk 0 0

where k%, = ¢, — k* and the eigenvalues of 4, are +m,
m # 0. Since the eigenvalues are repeated, in general, the
choice for P, should at best cause B, to be a Jordan
canonical matrix. This is the only restriction placed on the
form of P, by the solution method. Any P, which causes
B, to be a Jordan canonical matrix can be expected to

(32)

result in a valid solution. Since it is possible for several
different choices of P, to satisfy this condition, conceiv-
ably there may exist several possible mathematical solu-
tions to the problem.

Since the solution for a step-index fiber exists as a
special case of the solution for a graded-index fiber, it is
reasonable to choose P, based on the knowledge of the
exact solution for a step-index fiber. From the wave
equation formulation we know that for a step-index fiber
the differential equations for E, and h, become uncou-
pled and the resulting equations can be solved indepen-
dently of each other. This suggests that for the case of a
step-index fiber P(s) and hence P, should have a form
such that two of the four elements in the solution of the
vector v(s) should contribute to E, but not &, while the
remaining two elements contribute to 4, only. If P, is
chosen as

k%, 0 k%, 0
mk jm mk —jm
P, = 37
0 0 kL, 0 k%, (37)
— jme; mk jme; MK

then for a step-index fiber E, and /&, are at least uncou-
pled for the lowest order solution where P(s)= P,,.
Using P, given by (37), By is given by

m 0 0 0
10 m 0 0
B, = 0 0 -m 0o | (38)
0 0 0 —m

Since B, is a diagonal matrix instead of a Jordan canoni-
cal matrix, as was the case for the transverse modes, (28)
can be used to find W,. Recall that this solution for W,
may cause some clements of W, to be undefined. In
particular, for this problem the elements in the third and
fourth columns of both W,, and P, are undefined when
m=1,2,--+, k. However, owing to the structure of the
various matrices and the order of multiplication in the
definitions of W, and F,, these undefined elements re-
main in the third and fourth columns of all resulting
matrices. In the final solution these undefined elements
can be dropped since they contribute only to the two
solutions which are not finite at s = 0.

With P, and B, given by (37) and (38), respectively, the
general form of the solution to (11a) which is finite at
s =0 is given by

E, Pu(s)  Ppp(s)

sEy Py(s)  Py(s) || CieM i
=s" (39a)

h, Py(s)  Pyp(s) [\ Ce?™®

Sh¢ Py(s)  Prp(s)

where

N
Py(s)= L (P),s", i=1,23,4; j=12 (3%)
n=0

n

N
Ai(s) = ) (B.). i=1,2

n=1

71‘ 5 (39¢c)

and N is the number of iterations.
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For a biaxial graded-index fiber where €,(s) and €;(s)
have a parabolic profile given by (30) and e,(s) is a
constant, after two iterations the following expressions
are found for A,(s) and P, (s):

2.2

1 e mok
Al(s)z—z'.*n—l[f(é'l_Kz)‘f‘E _KZ(ZA%)]SZ (403)
1 1

2

1 €
Ay(s) = - Zr;[(el — k%) - 6’1"_ K2 (zAg)Jsz

(40b)

P11(5)=(€1—K2)
1
m (61 K) m?k (2&;)]
) (40¢)
mk (m+
.Pu(S)="j“Z—(,n_+1)(ZAQ)SZ (40d)
P21(s)=mk+zl(_nzk4-_1){:_j(€1—l<z)
+m71(—z_iél[(€1”2)+(’"“)fl]}sz (40¢)
Pyy(s) =Jm_1(—]+T){(€1—K2)
¢ ( 1)[(”’*‘1)K 2= (e x )]}s2 (40f)
Py(s) = 4;" 6+'<1 ) (249)s? (40g)
Py(s) =( K?) .
1 2
+3ﬂ2¥ﬁkﬁ‘ﬁ) mq@Aﬂ2(mm
P41(S)=—ijI+Z(_J_%—1_)
€3 20m +1)k
.[EI(EV-KZ)*'_éiiifl“(2A°4 (401)
P42(S)=m:<+z(7k_'Tﬁ
'[(E‘_"z) _E“:%l)j‘l(%")} (403)

This should not be considered an accurate solution for
u(s) since the term A% does not appear anywhere in
equations (40). This solution is identical to the solution
obtained after two iterations for a biaxial graded-index
fiber where €,(s) has a parabolic profile and e,(s) and
€5(s) are constant. Since A% appears only in the matrix
A,, at least four iterations must be performed in order to
obtain the effects of a nonconstant e;(s).

The solution for a uniaxial or a step index-fiber can be
obtained from equations (40) by setting A (and A%) equal
to zero. Notice that setting A equal to zero causes P;,(s)
and P;(s) to be set equal to zero. This corresponds to the

decoupling of the differential equations which occurs in
the wave equation formulation for the case of a step-
index fiber.

From numerical results, it appears that the functions
A(s) and P,(s) given in equations (40) are monotonic.
This indicates that the solutions for the various field
components will not have an oscillatory behavior. Conse-
quently, for a given value of m, only the mode with the
lowest cutoff frequency will be found. ‘

IV. NuMmEeRricaL REsuLTS

The propagation constants are found by requiring the
tangential components of the electric and magnetic fields
in the core and cladding to be continuous at the
core—cladding interface (i.e., at p=a or 5 = kya). In the
cladding, the fields can be found easily from the wave
equation formulation. Since the permittivity of the
cladding, €,e,, is a constant, (5a) and (5b) reduce to
Bessel’s equation. In order for the fields in the cladding
to decay exponentially as p approaches infinity, choose
K,,, the modified Bessel function of the second kind, as
the solution. Using (4b) and (4c), the tangential field
components in the cladding can be written as

K,,(yNs) 0
el BT HerS Ki(y)
= T K YIS "J—' m{ YIVS
SE¢ B 'y]%, (A)
h, 0 Km(yNs) B
sh €.8 mk
¢ . C
J—K (yNs - — K, (yNs
(41)
where A and B are constants and yg = «* — €. Using

(39a) and (41), the boundary conditions at s = kqa (p = a)
are satisfied, provided that

Py Py - K, 0
P p mk 'kOaK’ 0
21 2 vz J JN ™
Py Py, 0 - K,
. p €koa mKK
41 42 J 'YN m 1%] m
(koa)"C eM 0
(koa)"C,e 0
4 =1o (42)
B 0

where P;; = P, (kya), ;= A (kya), K, = K, (kyayy), and
K, = dKm(kyayy)/d(kyayy). The normalized propaga-
tion constant, k, as a functions of the normalized
wavenumber, k,a, is determined by finding those values
of k and k,a such that the determinant of the matrix in
(42) is identically equal to zero.
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Fig. 2. Normalized propagation constants for the HE;;, HE,,, and
HE;; modes in a biaxial graded-index fiber where e;(s) and e5(s) have
tl}]e parabolic profile given by eq. (30) and e,(s) is a constant (ie.,
A = 0).

As was previously stated, the solution for the biaxial
graded-index fiber given by equations (40) does not in-
clude the effects of a nonconstant e,(s). Obtaining a
more accurate solution requires performing more than
four iterations. Instead of deriving algebraic equations for
the elements of F,, B,, W,, and P,, the values of these
matrices can be determined numerically if the values of
m, k, and k,a are known in advance. One potential
difficulty with this method comes from the undefined
elements in W, and P,. Since these elements contribute
only to the solutions which are unbounded at s =0 they
can be set equal to zero without affecting the final solu-
tion. The ability to do this appears to depend upon the
form of A(s) and the ordering of the eigenvalues of 4,
in B,.

Asymptotic partitioning was used to solve the matrix
equation for several types of fibers. For the case of a
step-index fiber a comparison was made between the
propagation constants determined using asymptotic parti-
tioning and those determined using the exact solution.
For transverse modes the asymptotic solutions were in
poor agreement with the exact solutions. Since for trans-
verse modes in a step-index fiber asymptotic partitioning
produces a series solution, the poor agreement can be
attributed to using too few terms in the series expansion
of the exact solution. For hybrid modes there was a much
better agreement between the asymptotic solutions and
the exact solutions. In particular, for a step-index fiber
the asymptotic and the exact solutions produced almost
identical values for the propagation constants of the HE;
mode.

Fig. 2 is a plot of the normalized propagation constant
for the HE;, HE,,, and HE,; modes in a biaxial graded-
index fiber where €,(s) and e;(s) have a parabolic profile
and e,(s) is a constant.

V. CONCLUSIONS

For both the wave equation formulation and the matrix
equation, exact solutions are known only for the cases of
an isotropic step-index fiber and a uniaxial step-index

fiber. For isotropic and uniaxial graded-index fibers the
wave equation formulation can be solved approximately
using WKB analysis. For a biaxial graded-index fiber
WKB analysis cannot be used on the wave equation
formulation. Asymptotic partitioning can be used to solve
the matrix equation for all types of permittivity profiles.
For meridional modes, asymptotic partitioning appears to
generate the series solution for the matrix differential
equation. For hybrid modes, the solutions produced by
asymptotic partitioning have a form such that for a given
value of m only the mode with the lowest cutoff fre-
quency can be found. A nice feature of the asymptotic
solutions is that they remain valid all the way down to
cutoff. -
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