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Abstract —The problem of wave propagation in a biaxial
graded-index fiber with circular symmetry is considered. The

problem is formulated in terms of four first-order differential

equations for the tangential components of the electric and
magnetic fields. A general solution method for solving systems

of differential equations is presented. This solution method is

then used to solve the system of equations for a particular
example of a biaxial graded-index fiber. Numerical results for
the propagation constant in the fiber are also given.

I. INTRODUCTION

T HE optical fiber has become a much-studied trans-

mission system owing to its property of wave guid-

ance with low loss. In recent years it has been shown that

introducing anisotropies into the dielectric medium of the

fiber produces several interesting features, such as control

of power flow [1], loss characteristics [2], and reduction of

peak attenuation near cutoff [3].

Typically the analysis of wave propagation in a cylindri-

cal dielectric waveguide such as an optical fiber is per-

formed using a wave equation formulation. For the simple

case of a step-index fiber a detailed analysis, including

dispersion relations, cutoff conditions, and mode designa-

tions, is presented by Snitzer [4]. Paul and Shevgaonkar

[3] present a similar analysis for a uniaxial step-index fiber

and also perform a perturbation analysis to determine the

modal attenuation constants. These are the only two cases

for which exact solutions are known.

For inhomogeneous fibers no exact solutions are known.

For the case of an isotropic graded-index fiber several

approximate analytic solution methods are available.

These approximate solutions all share the common as-

sumption that the fiber is infinite in extent. In addition if

the permittivity is assumed to vary slowly over the dis-

tance of one wavelength the wave equation formulation

simplifies to an associated scalar wave equation. If the

permittivity profile is parabolic, the solution to the scalar

wave equation can be written in terms of either Laguerre

polynomials if cylindrical coordinates are used or Hermite

polynomials if rectangular coordinates are used [5]. For

arbitrary permittivity profiles the scalar wave equation
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can be solved using the well-known Wentzel–Kramers–

Brillouin (WKB) solution method [6], [7]. For a parabolic

permittivity profile all three solution methods give identi-

cal results. Under the assumption that the fields are far

from cutoff, Kurtz and Streifer [8], [9] have shown that a

solution to the full vector problem can be written either

in terms of Laguerre polynomials if the permittivity pro-

file is quadratic or asymptotically in terms of Bessel and

Airy functions for arbitrary permittivity profiles whlich

decrease slowly and monotonically. A comparison of the

vector and scalar solutions for the quadratic permittivity

profile implies that the vector modes can be obtained by

simply renumbering the scalar modes [10]. Using the

renumbered scalar modes as a basis, Hashimoto [11] and

Ikuno [12] have developed two slightly different asympt-

otic methods which can be used to solve the full vector

problem for an isotropic graded-index fiber.

These approximate solutions all share the common

feature that the propagation constants are determined

during the process of finding a solution to the wave

equation. This differs from the case of a step-index fiber,

where the propagation constants are determined by using

the solutions to the wave equation to impose the electro-

magnetic boundary conditions at the interface between

the core and the cladding of the optical fiber. Comparing

the propagation constants obtained using one of the ap-

proximate solution methods with those obtained usin,g a

numerical solution method [13], one finds that these ap-

proximate solutions methods produce modes which do

not appear in the numerical scilution. This suggests 1hat

the electromagnetic boundary conditions at the core–

cladding interface are important and that an alternative

formulation which permits the imposition of the boundary

conditions is needed.

An alternative formulation of the problem is to write

the four first-order differential equations for the tangen-

tial field components as a first-order matrix differential

equation. For a step-index fiber with uniaxial core and

cladding, Tonning [14] has shown that the matrix formula-

tion can be solved exactly in terms of Bessel functions.

For isotropic graded-index fibers with arbitrary permittiv-

ity profiles, Yeh and Lingren [13] have indirectly used Ithe

matrix formulation in developing a numerical solution

method based on the concept of stratification. Using the

concept of transition matrices, Tonning [15] has devel-

oped a numerical procedure which can be used to solve
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Fig. 1. Geometry of the fiber.

the matrix differential equation for isotropic graded-index

fibers.

II. FORMULATION OF THE PROBLEM

Consider a circularly symmetric optical fiber with the

geometry shown in Fig. 1. In the core, O < p < a, the

permittivity is given by ●O:r(p), where ●0 is the permittiv-

ity of free space and :,(p) is the relative permittivity

tensor of the core and is a function of p only. In the

cladding, a < p < b, the permittivity is given by eo~C, where

ec is the relative permittivity of the cladding and is

assumed to be constant. In both the core and the cladding

the permeability is I-Lo, the permeability of free space. For

convenience, the external radius of the cladding, b, is

assumed to be sufficiently large in comparison with the

radius of the core, a, so that it is not necessary to impose

boundary conditions at the air–cladding boundaw.

Consider the case where the relative permittivity tensor

in the core is given by

!●l(P) o 0

:,(p) = o ●2(P) o

)

(1)

o 0 ~3(P) p,+>z

where El(p), 62(P), and ~$p) are the relative permittivi-

ties in the p, @, and z directions respectively. In general

the relative permittivities are arbitrary functions of p.

However, the choice of cylindrical coordinates requires

that Cl(p) and .s2(p) be equal at p = O.
For time harmonic fields in a source-free region,

Maxwell’s equations can be written as

V X H= jweo.Z,E (2a)

V x E = – jmpoH, (2b)

where o is the angular frequency. If the z and @ depen-

dence of the fields is given by

where /3 is the longitudinal wavenumber and m is any

integer, then for cylindrical coordinates Maxwell’s equa-

tions can be written in component form as

~Hz + /3Ho = UeoelEP (3a)
P

dEz
j~EP + —= jupoH$

dp

(3d)

(3e)

The remainder of the problem can now be formulated in

two different ways. If the transverse field components EP,

E+, HP, and Ho are eliminated from equations (3), we

obtain a pair of coupled second-order differential equa-

tions for the longitudinal field components E= and Hz.

Alternatively, if the radial components EP and HP are

eliminated, we obtain a system of four first-order differ-

ential equations for the tangential field components E=,

E+, Hz, and H+.

First consider the coupled wave equation formulation.

It is convenient to define a normalized magnetic field

h = 20 H, where 20 = ~= is the impedance of free

space. Solving (3a), (3b), (3d), and (3e) for EP, E+, hP,

and h ~ gives

(4a)

(4b)

[

1 mko dEz
EP=~ —h= – j~z

tl P 1
[1 mf3 dEz

h+=~ —h= – jkoel —
tl P dp 1

[
1 m~ dh .

E+=~ —Ez + jko—
t? P dp 1
[ mkoe2 dhz

hp=+ – Ez–j~—
dp 1

(4d)
*2 P

(4C)

where k. = w G is the free-space wavenumber and

kf~ = k~e~(p) – p2, n = 1,2, is the transverse wavenum-

ber. Substituting the expressions for EP, E4, hP, and hb

given by equations (4) into (3c) and (3f) and making a

change of variable from p to a normalized radius r = p/a

results in the following pair of coupled differential equa-

tions for E= and h=:

E; +fl(r)E; +A2g1(r)Ez =p2(r)h; +~2(r)h, (Sa)

h; +f2(r)h& +A2g2(r)h= =pl(r)Ej+ql(r)Ez, (5b)
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where ‘= d/dr, A2 = (kOa)2, K = ~/kO, and

(6a)

(6b)

[

ti2.s2(r)
El(r) – K2] l–

A2c3(r)[~2(r) – K2]K2
1

(6c)

[

m2
g2(r)=[Ez(r)– K2] l–

A2[e1(r)– K2]r2 1 (6d)

Pi(r) =
%7$)1

(6e)

p2(r)=–xE-
el(r)r

jmK
q2(r) = —

el(r)r

e2(r) – El(r)

1

(6f)
c2(r)– K2

ej(r)

f32(r) – K2
(6g)

(6h)

The equations for E: and h= become uncoupled for three

particular cases. “For the so-called meridional modes m is

equal to zero and therefore, from (6e)–(6h), so are the

functions pi(r), p2(r), al(r), and q2(r). For isotropic and
uniaxial step-index fibers, El and ●2 are equal and con-
stant and again from (6e)–(6h) the functions Pi(r), Pz(r),

al(r), and q2(r) are zero.
In general a solution of equations (5) for arbitrary

permittivity profiles is not possible. It is possible to obtain

a fourth-order differential equation for either Ez or h= by

eliminating h= or E= from equations (5). However, the

complexity of the resulting equation precludes the deter-

mination of a solution. For meridional modes a direct

series solution of the uncoupled equations is possible.

However, because of the poles in the functions fl(r) and

f2(r) the resulting series solution will not be convergent

for the entire core region. An exact solution of equations

(5) is possible only for the case of a step-index fiber. For

either an isotropic or a uniaxial step-index fiber the

coupled equations simplify to Bessel’s differential equa-

tion.
In order to find an analytic solution of equations (5)

some assumptions must be made. First, the, cladding is

neglected and the core is assumed to extend to infinity.

This eliminates the need to impose boundary conditions

on the solution at the core–cladding boundaw. Second,

the permittivities are assumed to be slowly varying func-

tions of r over a distance of several wavelengths. This is

equivalent to assuming ~;(r)= O. For the case of either an

isotropic or a uniaxial graded-index fiber, cl(r)= e2(r),

application of the second assumption to equations (5)

results in the following equations for E, and h,:

E;+ ~Ej + A2g1(r)Ez = O (7a)
r

hg+~hj+A2g2(r)hz=0

where gl(r) and g2(r) are given by

7b)

gl(r) = ‘[ ’I(r) -K2]-~ (8a)

.
m’

g2(r)=~1(r)– K2–~. [8b)

For the case of a biaxial graded-index fiber, .sI(r) # e2(r),

the previous assumption does not cause equations (5) to

uncouple since pl(r ) and p2(r) are not identically equal

to zero.

Equations (7) can be solved easily using the well-known

WKB solution method [6], [7], [16]. The solutions ob-

tained using this method are not solutions of the full

vector problem given by equations (5) but rather are

solutions to a related scalar problem given by equations

(7). However, the vector solutions can be obtained by

renumbering the solutions to the scalar problem [10].

For the case of a biaxial graded-index fiber the WKB

solution method can be applied blindly to equations (5) to

determine the first term in the WKB expansion (higher

order terms are coupled). However, for biaxial graded-

index fibers, the term representing the phase of the WKB

solution contains a pole in addition to the one at r = O
which, for most permittivity profiles, lies in the core

region. Therefore, it is not reasonable to assume that the

WKB phase condition remains valid in this situation. In

order to solve Maxwell’s equations for the case alf a

biaxial graded-index fiber an alternative formulation

should be used.

Instead of eliminating the transverse field components

from equations (3), eliminate the radial field components

EP and HP and write the remaining four equations as a

system of four first-order differential equations in terms

of the tangential components [15]. From the two algebraic

equations, (3a) and (3d), the radial components can be

written in terms of the tangential components as

‘p”-+s;Ez+’E’lo

(9a)

(9b)
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Using equations (9), the four remaining equations can be

written as

dEz

ds =
‘j~h. +l(~l– K2 )(~~o) (Ioa)

Sel

~(sE+) = J## - e,s2)hz +j~(sho) (lob)

dhz
—=j~Ez-~(’2-K2)(%)ds

(1OC)

~(sh@) = - ~(mz - ,,s2)EZ - j~(sE@) (lOd)

where a change of variable from p to a normalized radius

s = /cOp has been made. Equations (10) can be written in

matrix form as

du 1
—=; A(S)U
ds

where

U = (E= sE@ h= sh+)’

and
(

o

A(s) = o

jm’

[ – j(m2 – ●ss2)

(ha)

(llb)

o

0

for the cases of an isotropic and a uniaxial step-index

fiber [14], [15]. These solutions are identical to the exact

solutions of the wave equation formulation.

It is not readily apparent that the matrix equation is

easier to solve than the wave equation formulation. As

was mentioned earlier, a series solution for the wave

equation formulation is possible only when the equations

are uncoupled. However, for the meridonal modes of a

graded-index fiber no series solution will be convergent

for the entire core region. In contrast, the system matrix

A(s) does not have any poles in the core region and

therefore the series solutions will be convergent in the

entire core region.

While the form of A(s) guarantees a convergent series

solution the series may not converge rapidly enough to

use it in numerical computations. An alternative solution

method is asymptotic partitioning of systems of equations

[17]. This method involves the transformation of a system

of linear first-order differential equations into a system of

equations whose solutions are easier to find. The form of

m’ j,o. \

- j(~2 – ‘2) o 0 I
– jm’

For the special case of meridional modes, m = O, equa-

tions (10) can be separated into two systems, each con-

taining two equations. The first set, corresponding to

transverse magnetic modes (TM), can be written in matrix

form as
&(TW ~A@M)(s)JTM)

ds ‘S
(12a)

where
U(TM) _ E

-( z ‘h@)T (12b)

and

‘(TM)(S)=L‘(’:K2)I‘12C)
The second set, corresponding to transverse electric modes

(TE), can be written as

where

and

The only

&(TE)
= AA(TE)(s)Ucm

ds S
(13a)

U(TE)= (hz SEO)T (13b)

(

oA(TE)(s) = – j(f2 – ‘2)

)

(13C)
– js2 o“

known exact solutions of the matrix equation are

o 0 J
the solution method presented in the next section is based

on the expansion of the general system matrix A(x) in

terms of positive powers of x, in contrast to the usual

form, where the expansion is in terms of powers of I/x

(see e.g. [17])

III. MATRIX PARTITIONING

Consider the following system of N linear differential

equations:

du 1
~=zA(x)u(x) asx+O (14)

where u is a column vector, q is an integer greater than

or equal to 1, and A(x) is an N x N matrix given by

A(x) = ~ A~xn asx_O. (15)
~=o

It is possible to simplify this system of equations by

transforming them into some special differential equa-

tions whose solutions are easier to find. Let

U(X) =P(X)LJ(X) (16)

where v is a column vector and P(x) is an N X N

nonsingular matrix. Using (16), the original problem given

by (14) can be transformed into

dv 1
—B(x)v(x)

dx = Xq
(17)
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where

[

dP(x)
B(X) =P(X)’-l A(x) P(x) –x~—

h 1
(18)

or, more conveniently,

dP(x)
XC7—-= A(X) P(X) -P(X) B(X).

dx
(19)

The matrix P(x) is chosen so that B(x) has a convenient

form, either the diagonal or the Jordan canonical form. If

B(x) has either of these forms, the solution of the trans-

formed system for v is trivially obtained. For example, if

A(x) is a constant matrix, then P(x) is also a constant

matrix and (18) is simply a similarity transformation. This

implies P(x) is chosen so that B(x) is either the diagonal

or the Jordan canonical form of A(-z ). In general, when

A(x) is not a constant matrix, P(x) is not a constant

matrix and it is not clear from either (18) or (19) how

P(x) should be chosen so that B(x) has the desired form.

In order to develop a procedure to find B(x) and P(x),

start by expanding them as the following Taylor series:

B(x) = ~ Bnxn as x-O
~=o

.

P(x) = ~ Pnxn asx~O (20)

n=O

where in general BO is a Jordan canonical matrix and B.

is a diagonal matrix. Substituting equations (20) into (19)

and equating like powers of x gives

AOPO – POBO = O (21)

for X“ and

(n-q+ l) P.:q+l= ~ (AIP._l-PIB._l) (22)
1=0

for x“, n >1, where P..q+l = O for n – q +1 <O. Equa-

tions (21) and (22) define an iterative procedure to find

the coefficient matrices for the series expansions of B(x)

and P(x) so that either (18) or (19) is satisfied. Equation

(21) can be rewritten as

BO = P{lAOPO (23)

which implies P. is chosen so that BO is either the

diagonal or the Jordan canonical form of Ao. With some

algebraic manipulations, (22) can be written more conve-

niently as

BOW~– W~BO=(n –q+l)Wn_q+l+B~– F~ (24)

where the matrices W. and F. are defined as

Wn= P; ~Pn (25)

and
n—1

F.= P[lAnPO + P~l ~ (A~_lP1 – PIB~_l). (26)
1=1

Notice that the unknowns in (24) are the matrices B. and

W. and that the matrices W. _q+ ~ and F. depend solely on

matrices found in previous iterations. Since by definition

B. is a diagonal matrix, (24) can be solved easily for B.

and W. by setting the diagonal elements of 13. and F.

equal to each other and then solving for W. from what

remains of (24). Since the form of BO is known in ad-

vance, an explicit solution in terms of B. and Fn can be

found for W..

Consider the special case where BO is a diagonal matrix

and q = 1. This corresponds to the form of the matrix

differential equation (11) which we want to solve. While it

is not obvious from (1 lc) that, for this particular problem,

B. will be a diagonal matrix, it will be shown later that it

is possible to ch-oose P. such that this is true.

When B. is a diagonal matrix the expression BOW. –

W.BO has zeros along its main diagonal and does not

depend upon the elements along the main diagonal of W..

The solution to (24) can be easily written as

((Fn)l,, i=j
(Bn)ij= o

? i#j
(27)

and

[

o, i=j

(WL,= _
Ai-:j-n(Fn)l° ‘#j ’28)

where A,, i= 1,2, ” “ “ , N, are the eigenvalues of AO. One

potential problem exists with this solution. If Ai – Aj – n

= O and (FJi, # O for some particular values of i, j, and

n, then it may not be possible to find W. and a solution

may therefore not be possible.

Consider a biaxial graded-index fiber with permittivity

profiles of the power law type given by

~i(r) = ei(l–2AiraI), i=l,2,3 (:29)

where .si = ei(0) and Al = (~i – ●C)/2ei. Since the chc~ice

of the coordinate system requires Cl(0)= ~z(0), the defini-

tion of Ai requires that Al and Az be equal. Then, for

this choice of permittivity profiles, El(r) and ez(r) are not

equal only when al # az. The case of a step-index fiber

exists as a special case to the power law profiles in the

limit as ai ~ ~, or, equivalently, by setting Ai = O.

Now let us solve the matrix equation for the transverse

modes in a biaxial fiber where the permittivity profiles are

parabolic. The relative permittivity profiles can be written

in terms of the normalized radius s = ICOP= (koa)r as

~,(s) =e, (l–2A~s2), i=l,2,3 (:30)

where A! = A ~\(koa)2. Strictly speaking, this choice for

●i(s) does not produce a biaxial fiber since by definition

El = ●2 and A! = A!. Since El(s) and ●z(s) do not apP(aar

together in the matrix equations for the transverse modes,

(12) and (13), it is not necessary to set q equal to El.

However, in the final result it is necessary to replace IEl by

El and either set A! = O and obtain the solution for a

biaxial fiber where El(s) is constant and ●z(s) is parabolic

or set A) = O and obtain the solution for the case where

cl(s) is parabolic and 62(s) is constant. The first term in

the series expansions for AmM)(s) and A(TE)(s) is given by

()~i=o T
o 00

(31a)
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where

[“,=+,-K’), i=TM
El (31b)

\-.i(62-~2),i=TE

Since the two eigenvalues of AO are both equal to zero it

is not possible to find a nonzero P. such that B. is a

diagonal matrix. Instead, P. must be chosen so that B. is

a Jordan canonical matrix. For A. as given by (31), choose

PO as

()7-0
‘0= o 1

so that

()~=ol
o 00

(32)

(33)

is a Jordan canonical matrix. After four iterations, the

solution for the TM case is found to be

(34b)

where k~l = ●1– K2 and Cl is a constant The solution

for the TE case is

where k~z = ●2 — K2.

Now consider the solution of the matri~ equation for

hybrid modes. For all permittivity profiles the first term in

the series expansion of A(s) is

A.= ()

IjmK – jk$l o

– jm’ – jmK o

0
0 I

where k~l = El – K2 and the eigenvalues of A o are + m,

m # O. Since the eigenvalues are repeated, in general, the

choice for P. should at best cause B. to be a Jordan

canonical matrix. This is the only restriction placed on the

form of P. by the solution method. Any P. which causes

B. to be a Jordan canonical matrix can be expected to

result in a valid solution. Since it is possible for several

different choices of Z’. to satisfy this condition, conceiv-

ably there may exist several possible mathematical solu-

tions to the problem.

Since the solution for a step-index fiber exists as a

special case of the solution for a graded-index fiber, it is

reasonable to choose P. based on the knowledge of the

exact solution for a step-index fiber. From the wave

equation formulation we know that for a step-index fiber

the differential equations for E= and hz become uncou-

pled and the resulting equations can be solved indepen-

dently of each other. This suggests that for the case of a

step-index fiber P(s) and hence P. should have a form

such that two of the four elements in the solution of the

vector v(s) should contribute to E= but not h, while the

remaining two elements contribute to hz only. If P. is

chosen as

P.= ‘OK -’m ‘OK
– jm

k~l k;l
(37)

\ – jmfl mK jmel mK
I

then for a step-index fiber E, and h, are at least uncou-

pled for the lowest order solution where P(s) = Po.

Using P. given by (37), B. is given by

/m OOO\

~=0 m O 0
0 OO–m O”

(38)

\OO O-m )
Since B. is a diagonal matrix instead of a Jordan canoni-

cal matrix, as was the case for the transverse modes, (28)

can be used to find W.. Recall that this solution for W.

may cause some elements of W. to be undefined. In

particular, for this problem the elements in the third and

fourth columns of both W2~ and P2~ are undefined when
m=l,2,. . . , k. However, owing to the structure of the

various matrices and the order of multiplication in the

definitions of W. and F., these undefined elements re-

main in the third and fourth columns of all resulting

matrices. In the final solution these undefined elements

can be dropped since they contribute only to the two

solutions which are not finite at s = O.

With P. and B. given by (37) and (38), respectively, the

general form of the solution to (ha) which is finite at

s = O is given by

where

Pij( s
~=o

N

F’ll(.s) PI’(S) ‘
P21(S) P“(s)

P31(S) P32(S)

P’I(s) P42(S) ,

Sn, i=l,2,3,

.n

Ai(s) = ~ (~n),i~, i=l,2
~=1 rb

and IV is the number of iterations.

(39a)

; j=l,2 (39b)

(39C)
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For a biaxial graded-index fiber where El(s) and C3(.S)

have a parabolic profile given by (30) and ez(,s) is a

constant, after two iterations the following expressions

are found for Ai(s) and PZj(s):

[

~l(S)= –_& :(61– K2)+

I

<(2A!) S2
1 CI— K

[

A2(s)=–; (C1– K2)–

,1

~(2A~) S2
151-K

~ll(S) = (61 – K2)

1
+

[

2(,1-K2 2
4n’z(rn +1) Cl

) - nZ2K2(2A~)

()
mK m+2

f’12(s) = –jT ~ (zA~)s2

~21(S) = 17tK +

{
4(mK+l) ~(’1-K2)

m2(2A~)
+

)
●1_K2 [( ’r K2)+(m+l)e1] ,2

P22(s) = jm –
j

4(m+l)
{

(E1 - K2)

m2(2A~)
+

}
●1_K2 [(m+l)K2 -(’ ‘K’)] s21

P31(s) = – j
4:::) (2A1)S2

~32(S) = (El - K2) ~

‘dm(~+~) [(~1-K2)2-m2~1(2A~)]sz

jel
F’AI(s) = – jmel +

4(nz+l)

[ 1.2(E,-K2)_‘2(m+1)K2(2@)S2El Cl—K2

K
P42(,S) = mK +

4(m+l)

“[

(~1-Kz)_m2(m+l)el
)

z (2A!) S2.
EI— K

(40a)

(40b)

S2

(40C)

(40d)

(40e)

(40f)

(40g)

(40h)

(40i)

(40j)

This should not be considered an accurate solution for

u(s) since the term A: does not appear anywhere in

equations (40). This solution is identical to the solution

obtained after two iterations for a biaxial graded-index

fiber where El(s) has a parabolic profile and 62(s) and

E3(s) are constant. Since A! appears only in the matrix

A4, at least four iterations must be performed in order to

obtain the effects of a nonconstant ~q(s).

The solution for a uniaxial or a step index-fiber can be

obtained from equations (40) by setting Al (and A:) equal

to zero. Notice that setting A! equal to zero causes P12(s)

and P31(.s) to be set equal to zero. This corresponds to the

decoupling of the differential equations which occurs in

the wave equation formulation for the case of a step-

index fiber.

From numerical results, it appears that the functions

A,(s) and Ptj(s) given in equations (40) are monotonic.

This indicates that the solutions for the various field

components will not have an oscillatory behavior. Con se-

quently, for a given value of m, only the mode with the

lowest cutoff frequency will be found.

IV. NUMERICAL RESULTS

The propagation constants are found by requiring the

tangential components of the electric and magnetic fields

in the core and cladding to be continuous at the

core–cladding interface (i.e., at p = a or s = /cOa). In the

cladding, the fields can be found easily from the wtive

equation formulation. Since the permittivity of the

cladding, cOeC, is a constant, (5a) and (5b) reduce to

Bessel’s equation. In order for the fields in the cladding

to decay exponentially as p approaches infinity, choose

Km, the modified Bessel function of the second kind, as

the solution. Using (4b) and (4c), the tangential field

components in the cladding can be written as

E=

SE+

h=

sh ~

—

KJ yNs) o

o Kn( yNs)

-.

(1A’
B

(41)

where A and B are constants and ‘y; = K2 – .sC. Using

(39a) and (41), the boundav conditions at s = k,a (p = a)

are satisfied, provided that

0
kOa

j—KL [
yN

– K.

(kOa)~Cle”

(kOa)mC2eA2

A
—

o

0

0 (42)

where Pij = PIJ(kOa), Ai = At(koa), Km = KM(kOU’yN), and

K~ = dKm(koayN)/ d(kOayN). The normalized propaga-

tion constant, K, as a functions of the normalized

wavenumber, kOa, is determined by finding those values

of K and kOa such that the determinant of the matrix in
(42) is identically equal to zero.
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Fig. 2. Normalized propagation constants for the HE II, HEZ1, and
HE~l modes in a biaxial graded-index fiber where ●l(s) and .s3(s) have

the parabolic profile given by eq. (30) and ez(s) is a constant (i.e.,

A!= O).

As was previously stated, the solution for the biaxial

graded-index fiber given by equations (40) does not in-

clude the effects of a nonconstant ●g(s). Obtaining a

more accurate solution requires performing more than

four iterations. Instead of deriving algebraic equations for

the elements of F., B., W., and P., the values of these

matrices can be determined numerically if the values of

n-t, ~, and /cOa are known in advance. One potential

difficulty with this method comes from the undefined

elements in W. and P.. Since these elements contribute

only to the solutions which are unbounded at s = O they

can be set equal to zero without affecting the final solu-

tion. The ability to do this appears to depend upon the

form of A(s) and the ordering of the eigenvalues of AO

in BO.

Asymptotic partitioning was used to solve the matrix

equation for several types of fibers. For the case of a

step-index fiber a comparison was made between the

propagation constants determined using asymptotic parti-

tioning and those determined using the exact solution.

For transverse modes the asymptotic solutions were in

poor agreement with the exact solutions. Since for trans-

verse modes in a step-index fiber asymptotic partitioning

produces a series solution, the poor agreement can be

attributed to using too few terms in the series expansion

of the exact solution. For hybrid modes there was a much

better agreement between the asymptotic solutions and

the exact solutions. In particular, for a step-index fiber

the asymptotic and the exact solutions produced almost

identical values for the propagation constants of the HE II

mode.

Fig. 2 is a plot of the normalized propagation constant

for the HE ~1, HEZI, and HE31 modes in a biaxial graded-
index fiber where cl(s) and .s3(s) have a parabolic profile

and ~z(s) is a constant.

V. CONCLUSIONS

For both the wave equation formulation and the matrix

equation, exact solutions are known only for the cases of

an isotropic step-index fiber and a uniaxial step-index

fiber. For isotropic and uniaxial graded-index fibers the

wave equation formulation can be solved approximately

using WKB analysis. For a biaxial graded-index fiber

WISB analysis cannot be used on the wave equation

formulation. Asymptotic partitioning can be used to solve

the matrix equation for all types of permittivity profiles.

For meridional modes, asymptotic partitioning appears to

generate the series solution for the matrix differential

equation. For hybrid modes, the solutions produced by

asymptotic partitioning have a form such that for a given

value of m only the mode with the lowest cutoff fre-

quency can be found. A nice feature of the asymptotic

soIutions is that they remain valid all the way down to

cutoff.
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